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ABSTRACT

A method is presented for shaping a booster trajectory to minimize
the sensitivity of terminal constraints to variations in vehicle or
atmosphere parameters. An example, using the Scout booster, is given
in which it is shown that the sensitivity of terminal altitude to var-
iations in first stage burn rate can be reduced by 504. An investigation,
using trial and error techniques, is also made to examine the influence
of the trajectory shape on some of the other major error sources for

the Scout vehicle.
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LAUNCH VEHICLE ERROR SENSITIVITY STUDY
by
Richard C. Rosenbaum and Robert E. Willwerth

Lockheed Missiles and Space Company

SECTION 1

INTRODUCTION

The advent of the high speed digital computer, together with the
development of the gradient method of trajectory optimization, has made
it possible to rapidly determine the maximum performance of booster
vehicles. In many cases, however, the capability of the booster exceeds
the mission requirements. The payload to be placed in orbit, for example,
may weigh considerably less than the maximum payload that the booster
can deliver into orbit. A variety of trajectories will satisfy the
mission requirement. It is logical to inquire whether the excess
booster capacity can be used to improve some characteristic of the tra-
Jjectory.

In this report, a method is presented for using the excess booster
capability to shape the trajectory in order to reduce the sensitivity
of the terminal constraints to variations in booster or atmosphere para-
meters. This is particularly important if an open-loop guidance system
is being used because there is no way to correct the pitch program to
compensate for non-standard conditions.

Trajectory shaping to minimize sensitivity has been employed in
references 1 and 2. Leondes and Volgenau in reference 1l reduce the impact

error of a ballistic missile by finding a trajectory which minimizes the



weighted sum of the partial derivatives of range with respect to the state var-
iables at burnout. A significant reduction in sensitivity is reported.
Watson and Stubberud in reference 2 attempt to reduce the effect of atmospheric
density variations on the impact point of an entry vehicle. Their results
indicate that no significant reduction in sensitivity is possible for
that mission. Both references use optimization schemes that require
the guessing of initial values of adjoint variables. 1In this report,
the gradient method, which requires no guessing, is used.
There are a number of error sources which can affect the accuracy
of meeting terminal constraints. In general, one would like to find
a trajectory which minimizes the sensitivity of all the terminal con-
straints to all the error sources. The theoretical formulation for
solving this problem is given in Section 2. In Section 3 the method
is applied to reduce the sensitivity of burnout altitude to first
stage burn rate errors for the Scout booster. In Section 4, an inves-
tigation is made to determine whether the shape of the trajectory has
a significant influence on the sensitivity of the Scout booster to
some other major error sources. The trajectory is changed arbitrarily

and perturbation runs are made to determine the change in sensitivity.



SECTION 2

GENERAL THEORY

The gradient method of optimization is to be used to reduce error
sensitivities. In order to apply this method, the linear perturbation
equation relating changes in the control variables to changes in the
sensitivity must first be obtained.

The equations of motion for a trajectory can be represented in the
form

% = £(x,%1,P,q) (1)
where f dis an n x 1 column vector
X is an n vector of state variables
a is an m vector of control variables
T 1is an 4 vector of control parameters
P is a k vector of system variables

q is a J vector of system parameters.

The control and system variables are functions which influence the
trajectory over a period of time, while the parameters affect the trajec-
tory at only one time. Thrust attitude and the length of a coast between
powered stages are examples of a control variable and a control parameter,
respectively. The system variables and parameters are the quantities
which cause trajectory errors when they have non-nominal values. The
control variables, once they have been determined, become system variables
because an error in the control is one of the major error sources. Thrust
magnitude and atmosphere density are other examples of system variables and
the burn time of a stage is an example of a system parameter,

The linear perturbation equation relating changes in system variables

and parameters to a terminal constraint is given by (reference 3)



te

6y = ft A*GPdt + S8q (@)
i

where
8¢y dis the change in the terminal constraint

A¢=)\§%§ (3)

A, is an n vector of adjoint variables which results from
v solving the set of differential equations

. 32\ T
A= -GN, (%)
with boundary conditions
el
Nlte) = S (5)

=tf

S depends on the parameters being considered. In general,
it is a function of x, a, and 1A, .

\J

The change in the system variables, dP, will be assumed constant.

The sensitivity of the constraint § to the variables P is thus given

by

H- [ e (6)

and the sensitivity to the parameters gq 1is

a¥v _
%% has k components and %g has j components. If it is desired

to find a trajectory which reduces the semrsitivity of the one constraint



¥ to all the error components, then a weighted sum of the absolute

values of the sensitivities must be formed. One obtains

k J
p=)a |+ Yo |3 @)
i=1 i i=1 %

$ becomes the payoff quantity to be minimized. The magnitudes of the
sensitivities can differ greatly, depending on the system variables and
parameters being considered. The weighting coefficients, a, and bi’
are chosen to equalize the contribution of each term in the payoff. In
addition, they can be used to emphasize the importance of certain of the

sensitivities.

The absolute value function can be removed from equation (8) by

choosing the signs of the weighting coefficients so that the product

ai(%%—) is always positive. Equation (8) can then be written in the
i

form
tp
g=] naresy (9)
i
where
k
T of
Mp =y ) e SE (20)
i=1 i
3
Sq = Zbisi (11)
i=1

In general, one will be interested in reducing the effect of the error
sources on a number of terminal constraints. Suppose there are ¢ con-

straints. Then Eqs. (10) and (11) become



c k

T of
Ap = Z X%ﬁma% (22)
h=1 i=l
¢ j
8, = by Sps (13)
h=1 i=1
where A is the vector of adjoint variables associated with the
h
hth constraint
. s e th . .th
Shi is the sensitivity of the h constraint to the 1
parameter
aps and bhi are matrices of weighting coefficients

The payoff quantity to be minimized is the @ of Eq. (9) with
Ap and 5, taken from Egs. (12) and (13). ¢ is a function of x,
0, and the adjoint variables associated with each terminal constraint.
The unique feature of this payoff is the dependence on the adjoint
variables. In order to determine the influence of the control on the
payoff, one must take into account the change in the adjoint variables
as well as the state variables.
The linear perturbation equation relating small changes in the
sensitivity payoff to changes in the controls has the form (reference 3)
tf
5p = f Ag 6o dt + Sgo7 (1k)
t.

i
An expression having this form is obtained by adjoining the state and

adjoint differential equations to the equation for the payoff. Following



reference 4, form a quantity

t,x,%, cee Q) = A R0 4
F( 2 X, X* ;l )\*1 ,Q) Ap(x’l*l,)‘*2 ,0)
c (15)
T .
+T(8) (£(ga)%) + ) uh(t)<x +(E )xh)
h=1
v(t) and p.h(t) are n vectors of adjoint variables or Lagrange
multipliers. F is just the integrand of Eg. (9) so that
e
¢=J'th+sq (16)
t
Now, proceeding formally, the differential of ¢ is given by
tf .
* |oF OF Z OF OF .5 \,oF
50 = —— 8%+ =% bX+ —— 6\, + —— § saldt
g Jt = 8 5% 2 CI T N R
i = h h
(17)
asq ¢ asq asq
+ — &6x + —_— &6\ + —— &
ox o\
h=1 %, B %
The partials of Sq are evaluated at the times at which the system
parameters influence the trajectory.
The term involving 8x is integrated by parts to give
o & R
F
f a—'xaxdt_-a-isxl - _f d,c( )5 at (18)
ti t; ti



Substituting for ¥ from Eq. (15) yields

r_ T T 't
Qb_: % dat = v ext-vT ext + f 3T 6x at (19)
ox

t, t,

d 1

where the superscripts i and f indicate values at times ¢t; and

tf ; respectively. Similarly, for each of the 6i*h one obtains
T T T bt
J g?—F— 81, at = Wbl -ul sl - [ el at (20)
Ny, W LY ¥ tg ¥
i

After substituting Egs. (19) and (20) in Eq. (17), one has

= N v
tf c 5 3
r|foF ..T X F . ¥
+ +v16x + T A, + — 6aj]dt (21)
0s ¢ 95 98
+ §x + }: =3 &\ + -3 85
oA ¥h
h=1 *h
v and “h are selected so that the coefficients of §x and éx*
h
inside the integral are zero. This leads to the differential equations
T
. OF
Vv = —(a—x) (22)
=\ T
fy, = (3?‘_%) n=1,c (23)
v



The boundary conditions for these equations are chosen so that §@ is
not a function of unknown quantities. The change in the state at tf,6xf,
is unknown. Therefore, its coefficient will be set to zero. This coeffi-

cient will involve pﬁ . Note from Eq. (5) that

oy

With Eq. (24) substituted into Eq. (21), the coefficient of axf is

A S
£ 1 3(°%
v+ hZ My, a—x(—ax)
=1

Setting this coefficient to zero leads to the boundary condition for v .

c
va = 2 £ 2 (-—a‘h (25)
- Mh 3x\5x
h=1
The adjoint variables, X* , are specified at the terminal time. The

change in the variables at ti is unknown. Therefore, the boundary

conditions for p are chosen to be

i
-0 (26)

The functions v and j, can be interpreted as sensitivities. v(t)
gives the change in ¢ due to a change in x at time +t . This is
identical to the relation between Ay and y . uh(t) gives the change

in ¢ due to a change in A*h at time t . Using this interpretation,

v and W can be modified to include the effects of the system parameters.

Suppose one of the system parameters appears at time tp . If there

9



is a 6x at time tp, then by Eq. (21), the sensitivity will change by

os
—3 sx(t
s 8x(%p)
as time goes from t; to t; . If v is to be the sensitivity of ¢

to x, then one must introduce a discontinuity in v at the times when
a system parameter affects the trajectory. In a similar manner, a
discontinuity in My is introduced at the same times when integrating

the equations.

" os
The presence of the term (§a2>5a in Eq. (21) is awkward. If &
is the control change, then large changes in ¢ can be made by making
large changes in « Jjust at the time the system parameter appears.
This will clearly not lead to practical control histories. The solution
is to convert @ +to a state variable and to make (& the control with
a limit on the magnitude of & . If this i& done, the term containing
6 will become part of the 6x term.
Eq. (21), then, is reduced to
tf _
6¢=J.t. %g&adt @7)
i
under the following conditions:
1) v and W, satisfy the diffential equations given in Egs. (22)
and (23) with boundary conditions given by Egs. (25) and (26).
2) The influence of the system parameters is handled by introducing

discontinuities in v and By -

10 10



3) The perturbation in the state variables at ti,axl, is zero.

Comparing Eq. (27) with Eq. (14), it is seen that the desired influence

coefficient, A¢, is given by

o

The effect of the control parameters on the payoff is introduced

Ay = oF (28)

by taking advantage of the sensitivity interpretation for v and ”h .

Suppose 60 1is zero from ti to t_. and introduce non-zero values for

f
sx* and ahi . Eq. (21) can then be written as
h
c
. T . T
£ f
66 = v 6x + z B, 6 (29)
v

h=1 h

A control parameter change, &7, will produce a &6x and a 61* . S¢
h

is then found from Eg. (29). This procedure will be illustrated in the
next section for the case of an adjustable coast between powered stages.
One should perhaps comment on the difference in superscripts for
§x and 6x¢ in Eq. (29). The state variables are integrated forward
in time. A Ehange 6x, applied at time ti, influences the trajectory
forward from ti to the final time. On the other hand, the adjoint
equations are integrated backwards in time. A change §\, , applied

¥

at time +t_, influences the trajectory backwards from tf to the initial

£
time.

How do the equations that have been derived here fit into the grad-
ient method of optimization? The initial conditions for the equations

involving &h (Eq. 23) are specified at t; . These equations can,

therefore, be integrated forward along with the state equations. The

11




initial conditions for the v equations (Eq. 22) are given at te -
These equations, which involve both Hy and A* , are integrated
backwards along with the usual adjoint equations (Eq. 4). A¢, which

is a function of v, By and hwh, is evaluated and stored along this
backward run. A¢ is combined with the influence coefficients for the
terminal constraints in the usual manner and an expression for §Q
which will reduce the payoff while meeting constraints is obtained.
Thus, the basic sequence of forward and backward integrations associated

with the gradient method is maintained. The only difference is that

several additional sets of differential equations must be integrated.

12



SECTION 3

NUMERICAL EXAMPLE

The procedure described in Section 2 will be used to minimize the sensitivity
of terminal altitude to first stage burn rate for the Scout booster. The mission
involves placing a payload into a reentry trajectory. There are terminal
constraints on the altitude, flight path angle, and down-range location of
reentry. There is also a constraint on dynamic pressure at the start of the

second stage.

3, Assumptions

The Scout Trajectory Optimization and Linearization Program (T@LIP)
described in reference 3 has been modified to incorporate sensitivity reduction.
In order to reduce the programming complexity, the following simplifications
have been made in the model:

(1) Motion is restricted to two dimensions. This reduces the number

end complexity of the second-order partial derivatives that must
be evaluated.

(2) An exponential atmosphere is used instead of the standard ARDC
atmosphere. This makes it possible to evaluate simply the second
order partials of density and pressure with respect to altitude.

(3) The 1ift coefficient 1s zero and the drag coefficient is assumed to
be independent of Mach number. This eliminates the necessity of

determining the second order partiels of C. and CD with respect

L
to Mach number.
(4) The thrust and mass flow rate in the first stage are constant.

The Scout vehicle used for this mission has three stages. The vehicle

13



coasts between the powered stages and the length of each of these coasts is s
control parameter. Also, there is no requirement that the third stage burn

out at the desired reentry point. Therefore, an adjustable coast is allowed

after the third stage. The thrust orientation angle, measured with respect to

an inertisl coordinate system, is the control variable.

3,2 The Sensitivity Function

The payoff to be minimized is the sensitivity of terminal altitude to first
stage burn rate. An incresse in the burn rate implies an increase in the thrust
and & decrease in the burn time such that the product of thrust and burn time
remain constant. The burn rate variation will be represented as a thrust variastion
where it is understood that a one pound increase in thrust goes along with a
decrease in burn time given by the ratio of the nominal burn time to the nominal

thrust. Let the nominal stage time be broken up into segments of length dtn .

Thrust le dt 5

-}

Time
FPig. 1. Sketch of Thrust Histories
The thrust magnitude over each segment is Tn as shown in Figure 1. When the
thrust is increased to the perturbed value Tp’ the length of each segment is
reduced to dtp .

The change in the terminal altitude, &h (tf), due to the perturbed thrust

over the interval dt; can be expressed as

14



T
6n (t.)= A"a(sx) (30)
where A is the vector of adjoint variables associated with the altitude constraint
and
a(6x) = xp(dtb)-xn(dtn) (31)
i.e., the difference between the perturbed trajectory variables after time interval

dtp and the nominal variables after time dtn .

The component of d{§x) due to increased thrust is found by writing the

differentisl of the trajectory equations (Eq. 1)
6X = <= 6T (32)

Over the time dtn, the change in x is

a(sx,) = g—g 8Tt (33)

The burn time is changed by

at

bt = —= 6T (34)
Tn

If the rate of change of x is f, then d(6x) due to the reduced burn time is

£
a(ex,) = - T 8Tat_ (35)

The combined effect is found by adding Egqs. (33) and (35) to give
df f
a(sx) =|\55 - 7| sTat, (36)
n
Substituting Eq. (36) into Eq. (30) yields
_yT[3f _ L
sn(t.) = A (3.,1, Tn) sTat (37)

The change over an entire stage is found by integrating Eq. (37). The resulting

sensitivity is

15



éh 3
S - fxT (a—g- - i‘,—) at (38)
stage 1 n

The Ap of Eq. (10), then, is just

T [Af
Ap =X (B_T - ,f,—) (39)
n

The sensitivity given by Eq. (38) is the payoff in the optimization procedure.

In order to determine whether an improvement in payoff has been achieved on:a

forward run, Eq. (38) must be evaluated. Note, however, that it depends on
the adjoint variables evaluated along that trajectory. These adjoint variables
are not known untll a backward integration of the trajectory has been made.
Therefore, at the end of every forward run which meets terminsl constraints, a
special backward run is made to integrate the adjoint equations so that the

payoff can be evaluated.

3.3 The Variational Equations

The sensitivity involves only one terminal constraint so that only one set
of 4 equations needs to be integrated. These equations are obtained by

substituting Eq. (15) into Eq. (23). The result is

T
© _oaf aA
i =30+ (3) (40)
From Eq. (26), the initial conditions are seen to be
w(ty) =0 (k1)
4 1s a five-component vector wilth one component for each of the state variables,
V,Y,T,T,m. af/BX is a 5 x 5 matrix whose components are given in the Appendix.

The last term in Eq. (40) is added only during the first stage. From Eq. (39)

16



it 1s

- -2 e)

From Eq. (22), the equations for » are

-G EET) @

with boundary conditions from Eq. (25) equal to
v(tf) =0 (bk)

v is a five-component vector. The partial of Ap with respect to x is given by

My _ T . 1 2 (45)
ax aTax Tn ¥x

The quantity in parenthesis in the last term of Eq. (43) is the second-order

partial of the Hamliltonian with respect to the state varisbles.

The influence coefficient relating the control 8 to the sensitivity is given

by substituting Eq. (15) into Eq. (28). The result is

A T
UMy, rar, T [far
Ag=355*Y 59*e 55 |6x) * (46)

The partial of Ap with respect to 0 is given by

[*4

oA
Pp_,\r(®e 1 a_f)
5 - (aTae - T 2 (47)

The final term in Eq. (46) can be written in the form

T T
T3 (68) ) -

17



The partial derivatives required to evaluate Eqs. (40) to (48) are given in the

Appendix.

3z L Adjusteble Cossts

The length of the coast after each powered stege is an adjustable parameter.
What influence does a change in coast time have on the sensitivity? Referring
to Eq. (29), it is seen that the influence of perturbations in x and A on the

sensitivity d is given by

5¢ = »iox + 76\ (49)
where the superscripts of Eq. (29) have been dropped. If the length of a coast
is changed on a forward integration, a §x will appear at the end of the coast
of magnitude

bx = xi, 8% (50)
e
On the other hand, A is integrated backwards in time. A change in coast length

leads to a A\ at the beginning of the coast given by

6A = -A|, 6t (51)
c,
i
The combined effect is obtained by substituting Eqs. (50) and (51) into
Eq. (49) to give
_ T s
8 = (vix|. - wh|, et (52)
c c.
f i
where tc and tc represent the times at the beginning and end of

i £
coast. The quantity in parenthesis in Eq. (52) is the S¢ term of

Eq. (1k).

3.5 Results

A number of cases were run to determine the reduction in sensitivity

18
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that can be obtained as the burnout weight is lowered. First,

using the SCOUT optimization program, it was determined that the maxi-
mum burnout weight for the reen?ry mission is 1392 pounds. The burnout
weight was then fixed at lower values ranging down to 1200 pounds and

the sensitivity was minimized for each burnout weight. As the burnout
weight is lowered, larger changes in the trajectory shape become possible
and the sensitivity can be reduced to a greater degree. The results are
shown in Fig. 2. It is seen that lowering the burnout weight from 1390
to 1200 pounds makes a 504 reduction in sensitivity possible. The general
trend of the trajectory shaping is to steepen the trajectory as shown in
the altitude-range profiles in Fig. 3. The initial trajectory is similar
to the maximum burnout weight trajectory. The control history for the
maximum burnout case was used as the nominal control history for the

1200 pound case. The initial trajectory is the guided trajectory that
met terminal conditions. It should be noted that the sensitivity for

the initial trajectory is h2.3, which is almost as high as the sensi-
tivity for the maximum weight case. This indicates that the reduction
in sensitivity is due to shaping the trajectory and not merely to lower-
ing the burnout weight.

The sensitivities plotted in Fig. 2 come from evaluating the
integral in Eg. (38). To check this integral, the burn rate was per-
turbed for the two trajectories in Fig. 5 and the change in terminal
altitude was observed. A comparison of the integral and the perturba-
tion evaluation of sensitivity is shown in Table 1. The agreement

between the two calculstions is good..

21



TABLE 1

Sensitivity Evaluation

Integral Perturbations
Initial trajectory k2.3 k3.2
Minimum sensitivity trajectory 18.9 17.3

It is interesting to note that the trajectory that minimizes the
altitude sensitivity also reduces the sensitivity of the other terminal
constraints to burn rate changes. The effect of a 400 pound change in
thrust on the terminal constraints for the two trajectories in Fig. 3

is shown in Table 2.

TABLE 2
Perturbations in Terminal Constraints
Constraint Initial Trajectory Minimum Sensivity
Trajectory
Altitude (ft) 17276 6901
Flight path angle (dg) .08 .02
Velocity (fps) -59.6 -28.3
Range (rm) -2.3 -1.5

There were several anomalous results that could not be explained.
The optimization procedure seemed to converge very well. However, the
improvement in payoff that was obtained during early optimization iter-
ations was very close to double the improvement asked for. This behavior
has not been noted with conventional payoff variables. Also, pertur-
bation runs were made to check out the velocity and altitude components
of the vector Vv at the initial time. The results of the perturbation

runs differed from the integrated values by a factor of three.
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SECTION &
NUMERICAL ERROR SENSITTVITY ANALYSIS

In this section, the results of a numerical analysis of SCOUT error sensi-
tivities are reported. This investigation of the dependence of SCOUT dispersions
on the nominal trajectory profile was conducted using the TOLIP computer program
(refereace 3) originally developed for the NASA SCOUT Project Office at Langley
Rescarch Center by IMSC. The SCOUT simulation in TOLIP as employed in the
analysis described in this sectlon included the approximated effects of the
SCOUT control system characteristics as well as an oblate rotating Earth model.
The primary purpose of this analysis was to identify the principal error
sources of the SCOUT system and, in particular, find those error sources for
which the resultant dispersions could likely be minimized by the automated tra-
Jectory shaping procedure discussed in Section 2. To this end, six significant
error sources were chosen for study based on the results of the recent TRW SCOUT.
Error Analysis Contract (reference 5). -These vehicle/environmental anomalies were
then simulated on TOLIP to determine resultant dispersion of final burnout
conditions. This was done for two different mission trajectory profiles, each
of which had been optimized for maximum payload. The nominal trajectories were
then oiffloaded in payload and purposely distorted in such ways as it was felt
would reduce dispersions resulting from the seme error sources. The dispersed
trajectories were then computed about these off-optimum trajectories. As was
hoped, error sensitivities were indeed reduced in some cases and Stage 1 burn
rate was selected for further study as discussed in Section 3. 1In the present
section, the selection of principal error sources for study, the nominal and

distorted trajectories, and a summary of all dispersion results are discussed.

4,1 Nominal Trajectories

In order to study two quite different trajectory profiles a three-stage
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"Re-entry F" and a five-stage "Sunblazer" case were selected. As shown on the
altitude-range profile of Figure 3 the "Re-entry F" configuration employs a two-
stage initial boost, coast through apogee, and third stage acceleration to the
desired re-entry conditions of velocity, range and flight path angle. A dynemic
pressure of 40 lb/ft2 at stage~two ignition was also imposed. This trajectory
has been optimized by TOLIP for maximum payload, producing a third stage

burnout weight of 1262.4 1b. The optimum pitch program was automatically
linearized by TOLIP, including body dynamics effects. A summary of stage weights
used in the simulation is included in Table 3.

The "Sunblazer" configuration which was simulated here employed the same first
three stages and a fourth stage assumed to have continuous control, followed by

a spin-stabdlized final stage. Trajectory constraints imposed on the optimization
included the terminal hyperbolic excess velocity, right ascension and declination
of the hyperbolic departure asymptote, perigee radius, and dynamic pressure at
ignition of steges two anmd three. The stage welghts are summarized in Table 3

Note that maximum stage-five burnout weight is 71.8 1b.

4.2 Dispersion Error Sources

Selection of six principal error sources for study here was based on results
of the TRW Error Analysis Contract (reference 5) and a desire to include several
different types of vehicle/ environmental anomalies. They are as follows:

— Atmospheric density and pressure variation. Twenty percent high over
the entire trajectory, affecting axial and normal force and nozzle
back-pressure.

— First stage timer error - first pitch rate step. A deley in the
initiation of the pitch-over of 0.234 seconds, all subsequent rates
started on time but a residual pitch attitude error of 0.234 *é,

over entire trajectory.
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Launch Gross

Stg.
Stg.

Stg.

1 Prop.
2 Ignit.

2 Prop.

Stg. 3 Ignit.

Stg.

3 Prop.

(Stg. 3 Burnout)

Stg.
Stg.
Stg.

Stg.

b Ignit.
L4 Prop.
5 Ignit.

5 Prop.

(stg. 5 Burnout)

TABLE 3

SCOUT SUMMARY WEIGHT STATEMENT

Re-entry F
39376.5
21355.0
14k452.8
8275.2
384hL .4
2582.0

1262.4

25

Sunblazer
39340.9
21355.0
14917.2
8275.2
4308.8

2582.0

946.8
613.9
265.2
193.4
71.8



— Tirst stage specific impulse. Simulated as a 0.54 percent increase in
Stage 1 thrust at nominal mess burn-rate.

— First stage burn rate. Simulated &ds a 4.2 percent increase in thrust
and mass burn rate resulting in a 3.22 second shorter durastion stage 1
but nominal timing from launch of all other events.

— Second stage thrust misalignment. Simulated as a 0.8 degree pitch-up
blas in second stage attitude corresponding to the nominal control system
dead band.

— PFifth stage tipoff error. Simulated as a constant pitch-up bias of 2.72
degrees in stage 5 on the "Sunblazer" mission. It should be noted that
the magnitudes of all error sources, above, were intended to represent

3 sigma deviatiors from nominal.

4.3 Error Analysis Results

Surmarized in Table 4 are the results of the "Re-entry F" error sensitivity
analysis. Errors in third stage burnout velocity, altitude, flight path angle
and range are given for the error sources described in Section 4.2. The first
set of answers pertains to dispersions about the maximum-payload nominal and are
of the same order of magnitude as given in Reference 5. The second set of dis-
persions are with respect to a distorted nominal in which the same end conditions
were met but payload was off-loaded 60 1b. and the first stage trajectory steep-
ened. Flight path angle at first stage burnout was raised from 39 degrees to
50 degrees. Although the expected reduction in sensitivity to atmospheric
density and pressure did not materialize, the burn rate sensitivity decreased
substantially. Partially on the basis of these results, the burn rate was
selected for the work described in Section 3. Another partial set of runs was

also made (although not shown in Table L), in which the first pitch rate was
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TABLE 4

"RE-ENTRY F'DISPERSION SUMMARY

Nominal End Conditions: VEL = 19760 ft/sec, ALT = 400,000 ft., GAM =-20 deg., RNG = 525 N.MI.
DISPERSIONS
Error Source Max. Payload Nom. Steepened Stg. 1 Minimum Time

' I TYEL ALT GAM RNG ' ! VEL ALT GAM RNG! TVEL  ALT GAM  RNG !
Atmos Density & Press. -2  -70,000 -0.73 -5.6 1T -70,000 -0.67 -k4.2 1 -66,800 -0.72 -Lk.9
Timer Error -lst Step -93 29,900 0.66 -h.h -107 30,100 0.38 -L.8 -111 34,100 O.44 -4.8
Stg. 1 Spec. Imp. 0 13,600 0.14 1.0 -6 14,800 0.14% 0.7 0 12,900 0.13 1.0
Stg. 1 Burnrate -37 18,300 0.06 -1.1 -20 13,400 0.0k -0.5 ~k4 19,200 0.05 -1l.5
Stg. 2 Thrust Misalin. -9k 28,100 0.14 -3.4 -93 31,600 0.16 -3.k -9k 26,500 0.13 -3.2



set at half the optimum value, thus delaying much of the pitch over. As would
be expected, the dispersions from a timer error at initiation of the first
step were reduced roughly by half. However, other dispersions were virtually
unaffected. On yet another set, second stage burn was delayed somewhat with
the intention of shortening the coast after second stage, thus reducing the
propagation of stage-two thrust misalignment errors. However, the net effect
of forcing a lengthened first coast was in fact to lengthen the second coast,
because of the eitra gravity losses introduced, and actually worsén the
dispersions somewhat. In an attempt to profit from this experience, however,
a new option was added to TOLIP to shape trajectories for minimum time to
final burnout. Again, the intent was to directly reduce the propagetion time.
As with the steepened first-stage case, the payload was decreased by 60 pounds
and flight time minimized by 20 seconds out of 400. The results are shown

in Table 4, indicating essentially no reduction in sensitivity. Thus, for the
"Re-entry F" mission the most effective means of reducing sensitivities to the

selected error sourceg was by steepening of the first stage path.

In consideration of the "Sunblazer" mission, again the dispersions sbout the
maximum payload nominal, steepened first stage, and minimum boost time trajectories
were evaluated. These results are summarized in Table 5, and again one concludes
that an enforced steepening of first stage produces the best results of these
techniques. Here, payload was reduced by only 3 pounds and error sensitivities
were diminished by as much as 30 percent by increasing first stage burnout path
angle from 3k degrees to 50 degrees. For the minimum-time technique the flight
time was reduced from 660 to 520 seconds--again with only a 3 pound payload
reduction. This much reduction in flight time should result in a decreased

sensitivity to many other SCOUT dispersion sources not treated in this analysis.
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TABLE S
"SUNBLAZER' DISPERSION SUMMARY

Nominal End Conditions: VEL = 39,586 ft/sec. ALT
Hyperbolic Excess VH = 16,200 ft/sec, RT. ASC.

674,000 ft, GAM = 2.50 deg. INCL = 37.9 deg.
85.00 deg. DECLIN., =-36.1 deg.

DISPERSIONS
Error Source Max. Payload Nom. Steepened Stg. 1 Minimum Time
1 {VH RT. ASC. DECLIN.! !'VH RT. ASC. DECLIN.} WH RT. ASC, DECLIN.!

Atmos Dens. & Press. -290 1.77 -0.3 -157 1.23 -0.23 -245  1.58 -0.26
Timer Error -lst Step -217 -0.59 0.11 -163 -0.47 0.08 -201 -0.68 0.12
Stg. 1 Spec. Imp. 52 -0.31 0.05 33 -0.26 0.04 kT  -0.29 0.05
Stg. 1 Burn rate 29 -0.05 0.01 -39 0.04 -0.01 -58 0.03 0
Stg. 2 Thrust Misalin. -134 0.0k -0.01 -105 -0.09 0.01 -120 0.08 -0.01

Stg. 5 Tip-off 4y .1.62 -0.30 5 <1.66 0.31 -250 2.37 -0.39



SECTION 5

CONCLUSIONS AND RECOQMMENDATIONS
There are two conclusions to be drawn from this study:

1) Trajectory shaping can significantly reduce the sensitivity of
terminal constraints to variations in system parameters.
2) The gradient method of optimization can be used to find the mini-

mum sensitivity trajectory.

In view of the success achieved in minimizing the sensitivity to
one error source, it would seen fruitful to apply this method to a
problem in which all the major error sources are included simultaneously.

Certain error sources are likely to excite the guidance and control
systems of the boost vehicle. The Scout vehicle, for example, will
attempt to correct an error in pitch attitude. The behavior of these

syStems should be included in the model used to evaluate the sensitivities.

30



APPENDIX

EQUATIONS OF MOTION AND PARTTIAL DERIVATIVES

The equations of motion are the two dimensional form of the equations

in Ref. 3. They are
F=t%=-g sin7y + 2(C cos@ + C,,%ing) - D
n' 22 23 m

=y =(X_8 I ;
G=9 = (r v)cos7 + mv(05200s9 + C5BS1ne)

L]
Il

]
I

v siny

* _ Y cosy
T

. T
N=m-= - = T

o sp

where

022 = COST cOsY + sint siny

€33 = Cxp

Q
Y
1

sint cosy + cost siny

23
52 23

2 .
PV CDA CD independent of Mach number

-Bh 1
P = 53600

f 4is a column vector given by

H
fl
2Z2rRHaH
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The partial derivative matrix of f with respect to x is

where

df _

OF OF OF OF JOF
Ov oy or or om

G oG oG 0OG oG

ov. d Or Ot om

]

1
- E pVACD
o¢ oC
T 22 25 .
-g cosy + m(W cosQ + ?7— s1ne)
2
C AV
2n . _e QB .
;-5— siny - — dh(ngcose + 023s1ne)- 5 T
%(ﬁgf—z cosg + ?géé sine)
T . D
- ?(szcose + CEBSlne) + 55
m m
cosy T .
= ==L 4 cosy - —5(C,,.cos@ + C,,sing)
T fi oo 22 33
oC ocC
v o [ T 32 .
-7 siny + v siny + mv(w cosg + ?;1 81ne)

n

- . ._edp i
2 cosy + =N cosy - — dh(CBZCOSe + C35s1ne)
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¢ T (8032 ac55 sine)
-

5> = v\ or cosg + —5——
oG T
S mev(Cjzeose + 053sine)
% = siny
oI
3 = Vv cosy
0K _ cosy
NS
9K _ v siny
or T
oK _ _ v cosy
or 2
r

The partial derivatives of f with respect to T are

[ JF
%
Jole}
JT
df
5t = | °
o}
ON
oT
where
oF _ l(C cos® + C_,sing)
dr m 22 25
oG

1 .
3 = E(CBECOSQ + C3jslne)
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The second order partial of F with respect to the vector x and
f
the scalar T is found by taking the partial of each term in g—x with

respect to T .

— —_—
0 FT7 0 F'I'-r F’I‘m
. GTV GT7 0 GTr GTm
O
oTdx ~ | © 0] 0 o] 0
0 0 0 0 0
LP 0 0 0 0_]
where 1 aC22 6023
FTy = Sy cosg + Sy sin@

ocC oc,
oy = HORZ2 coso o+ 522 sind

FTm = - ié(C22c°se + C23sin9)
GTv = - —:Le-(cjecose + Cﬁsine)
mv
C oc
L7732 35 .
by =\ 0t Sme)
oc oC
_l{ 32 33 .
GT'r - mv(-w cosb + or sn.ne)
N i
Gpy = - mv2(052c0s9 + 035s1ne)

The second order partial of the Hamiltonian is
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e 2|2

The term in brackets is a column vectar. Each component of the vector
is converted to a row when the partial with respect to the state vector

is taken. The components of Hxx can be written as

. —
va Fvv va 0 6] O
H ¢}
vy 0 GV7 IV7 KV7
Hol = (F, G, ©0 X_ 0ff[l
HVT 0] GVT 0 0 0
_?VEJ fvm Cym 0 0 9.
- - - —_
F G 0
H&7 Y7 Va4 I77 K§7
H F G 0 0
ey |rr yr K7r (]
H?T F7T G7T 0 0 0
H 0 0 0
Pl Pm % )
— — —_ —
rr rr Cpr 0 Ky O
HrT = FrT GrT 0 ° oy [
A L A
1| F G 0 o o
T T TT
= Al
H F G 0 0] 0
_TIPJ b"!‘111 T _
[ 1=, G, © © 0]l
where
pC. A
F o= -2
v m
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o a¢
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where
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— = E(-022s1ne + C_,cos8)
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